Circle patterns on surfaces with complex projective structures
 Joint work with Andrew Yarmola

Jean-Marc Schlenker
University of Luxembourg

Circle Packings and Geometric Rigidity ICERM, July 6-10, 2020 (online)

Where do circleslive?

What do we need to consider circles?

- The Euclidean plane.

Circles are invariant under isometries \Rightarrow also in Euclidean surfaces. Flat surface : charts in \mathbb{R}^{2}, transitions maps are Euclidean isometries.

- The hyperbolic plane.

Same reason - also on hyperbolic surfaces.
Hyperbolic surface : charts in \mathbb{H}^{2}, transitions maps are hyperbolic isometries.

- $\mathbb{C P}^{1}$.

Notion of circle, invariant under Möbius transformations.
Complex projective structures : charts in $\mathbb{C P}^{1}$, transition maps in $\operatorname{PSL}(2, \mathbb{C})$.
Also called $\mathbb{C P}^{1}$-structures on a surface S. Space $\mathcal{C} \mathcal{P}_{S}$.

Complex projective structures on surfaces

Let $\sigma \in \mathcal{C} \mathcal{P}_{S}$ be a $\mathbb{C P}^{1}$-structure on S. We have :

- A developing map dev $: \tilde{S} \rightarrow \mathbb{C P}^{1}$.
- A holonomy representation $\rho: \pi_{1} S \rightarrow \operatorname{PSL}(2, \mathbb{C})$.
σ is Fuchsian if $d e v$ is a homeomorphism onto a disk, or equivalently if ρ is Fuchsian (into $\operatorname{PSL}(2, \mathbb{R})$, up to conjugation).

Examples:

- A hyperbolic structure determines a Fuchsian $\mathbb{C P}^{1}$-structure on S.
- An Euclidean structure on T^{2} determines a $\mathbb{C P}^{1}$-structure, $\operatorname{dev}\left(\tilde{T}^{2}\right)=\mathbb{C P}^{1} \backslash\{\infty\}$.

Thm. (Thurston-Lok) $\mathbb{C P}^{1}$-structures are locally determined by their devoloping map $\rho: \pi_{1} S \rightarrow \operatorname{PSL}(2, \mathbb{C})$.
hobnomy rep.
Therefore, $\mathcal{C} \mathcal{P}_{S}$ has complex dimension $6 g-6$ for $g \geq 2,2$ for $g=1$.

Circle packings on surfaces with $\mathbb{C P}^{1}$-structures

S^{2} admits a unique $\mathbb{C P}^{1}$-structure, given by $\mathbb{C P}^{1}$.
Thm. (Koebe) The 1 -skeleton of a triangulation of S^{2} is the incidence graph of a circle packing of $\mathbb{C P}^{1}$, unique up to Möbius transformations.

Thm. (Thurston) The 1-skeleton of a triangulation of $S_{g}, g \geq 2$, is the incidence graph of a unique circle packing in S_{g} equipped with some hyperbolic metric.

Question. How to understand all circle packings on S_{g} equipped with any $\mathbb{C P}^{1}$-structure, not necessarily Fuchsian?

There should be many - real dimension $6 g-6$.

The KMT conjecture

Since $\operatorname{PSL}(2, \mathbb{C})$ acts on $\mathbb{C P}^{1}$ by holomorphic maps, any $\mathbb{C P}^{1}$-structure on S determines an underlying complex structure.
Complex structure : charts in \mathbb{C}, transition maps holomorphic.
The space of complex structures on S (up to isotopy) is the Teichmüller space of S, \mathcal{T}_{S}. It has real dimension $6 \mathrm{~g}-6$.
$\mathcal{C} \mathcal{P}_{S} \simeq T^{*} \mathcal{T}_{S}$, through a construction using the Schwarzian derivative.
Kojima, Mizushima and Tan proposed :
Conj. (KMT) Let Γ be the 1 -skeleton of a triangulation of S_{g}, let $\mathcal{C} \mathcal{P}_{\Gamma}$ be the space of $\mathbb{C P}^{1}$-structures on S admitting a circle packing with incidence graph Γ. Then the forgetful map $\mathbb{C P}_{\Gamma} \rightarrow \mathcal{T}_{S}$ is a homeomorphism.

Holds for $g=0$ (Koebe), also for tori when Γ has only one vertex (KMT). Note : interaction between discrete and continuous conformal structures.

Delaunay circle patterns

A Delaunay circle pattern on S equipped with a $\mathbb{C P}^{1}$-structure S is (basically) the pattern of circles associated to the Delaunay decomposition of a finite set of points on S.
To a circle packing on (S, σ) with incidence graph the 1 -skeleton of a triangulation, one can associate a Delaunay circle pattern with all intersection angles $\pi / 2$: add dual circles, associated to the faces of Γ and orthogonal to the circles associated to adjacent vertices.
To a Delaunay circle pattern one can associate :

- An incidence graph (vertices=circles, edges=incidence relations),
- an angle for each edge : the intersection angle between circles (π if tangent).

Hyperbolic ends
A more general point of view

A Delaunay circle pattern

The KMT conjecture for Delaunay circle patterns

The intersection angles of a Delaunay circle pattern satisfy :
(1) For each vertex v of $\Gamma^{*}, \sum_{v \in e} \theta_{e}=2 \pi$.
(2) For each closed contractible path in Γ° not bounding a face, $\sum_{e} \theta_{e}>2 \pi$.
Conj \mathbf{A}. Let Γ be the 1 -skeleton of a cell decomposition of S, and $\theta: \Gamma^{1} \rightarrow(0, \pi)$ satisfying (1) and (2). Let $\mathcal{C} \mathcal{P}_{\Gamma, \theta}$ be the space of $\mathbb{C P}^{1}$-structures with a Delaunay circle pattern with incidence graph Γ and intersection angles θ. The forgetful map $\mathcal{C} \mathcal{P}_{\Gamma, \theta} \rightarrow \mathcal{T}_{S}$ is a homeomorphism.

A deformation argument

A possible path towards a proof of Conj. A :
(1) $\mathcal{C} \mathcal{P}_{\Gamma, \boldsymbol{\theta}}$ has real dimension $6 g-6$,
(2) $\pi_{\mid \mathcal{C} \mathcal{P}_{\mathrm{r}, \theta}}$ has injective differential (infinitesimal rigidity),
(3) $\pi_{\mid \mathcal{C P}_{\mathrm{r}, \theta}}: \mathcal{C} \mathcal{P}_{\Gamma, \theta} \rightarrow \mathcal{T}_{S}$ is proper,
(4) $\mathcal{C} \mathcal{P}_{\Gamma, \theta}$ is connected and \mathcal{T}_{S} simply connected.
(1) + (2) $\rightarrow \pi_{\mid \mathcal{C P}_{\mathrm{r}, \theta}}$ is a local homeomorphism,
(3) \rightarrow it is a covering map,
(4) \rightarrow the degree is 1 .

For (2) see talk by Wayne Lam, for $g=1$.
Thm B. (3) holds.
Note. Also implies the corresponding properness for circle packings follows.

From $\mathbb{C P}^{1}$-structure to hyperbolic ends

Def. A hyperbolic end is a hyperbolic manifold homeomorphic to $S \times[0, \infty)$, complete on the side of ∞, and bounded on the side of 0 by a concave pleated surface. Thm. (Thurston) 1-1 correspondence between hyperbolic ends and $\mathbb{C P}^{1}$ structures on S.
Hyperbolic ends are also determined by the data on the 0 side : a hyperbolic metric and a measured bending lamination. $\mathcal{C} \mathcal{P}_{S} \simeq \mathcal{T}_{S} \times \mathcal{M} \mathcal{L}_{S}$.
Delaunay circle pattern at infinity \rightarrow ideal polyhedron in E, ext. dihedral angles θ.

Key ideas of the proof of Thm B

Let $\sigma_{n} \in \mathcal{C} \mathcal{P}_{\Gamma, \theta}, n \in \mathbb{N}$, and let $c_{n}=\pi\left(\sigma_{n}\right)$. We assume that $\left(c_{n}\right)_{n \in \mathbb{N}}$ converges, and need to prove that a subsequence of $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ converges.
We consider the hyperbolic end E_{n} associated to σ_{n}, and $\left(m_{n}, I_{n}\right) \in \mathcal{T}_{S} \times \mathcal{M} \mathcal{L}_{S}$. Then I_{n} is bounded because dihedral angles are bounded, m_{l} is bounded because c_{n} is bounded.

The Weyl problem in \mathbb{H}^{3} and its dual

Weyl problem. (Alexandrov, Pogorelov) Let g be a metric on S^{2} with $K \geq-1$. Is there a unique convex body in \mathbb{H}^{3} with induced metric g on its boundary?

Weyl* problem. Let g be a metric on S^{2} with $K<1$ and closed geodesics of length $L>2 \pi$. Is there a unique convex body in \mathbb{H}^{3} with $I I I=g$ on the boundary ?

For polyhedra, III is related to dihedral angles.
Results on Weyl* for compact polyhedra (Rivin-Hodgson), ideal polyhedra (Rivin), smooth surfaces (S.) etc.
For Fuchsian polyhedra (Bobenko-Springborn, Fillastre, Leibon, ...)

The Weyl problem in hyperbolic ends

Question. Let g be a metric on S with $K \geq-1$, and let $c \in \mathcal{T}_{s}$. Is there a unique hyperbolic end containing a convex domain with induced metric g on the boundary, and with conformal structure at infinity c ?
Question*. Let g be a metric on S with $K<1$ and closed, contractible geodesics of length $L>2 \pi$, and let $c \in \mathcal{T}_{s}$. Is there a unique hyperbolic end containing a convex domain with $I I I=g$ on the boundary, and with conformal structure at infinity c ?
Conj. A is a special case of the second question for "ideal polyhedra".

Unbounded convex subsets in \mathbb{H}^{3}

Consider \tilde{E}, and forget the group action. Leads to a Weyl problem for unbounded convex domains in \mathbb{H}^{3}. Different flavors, one particularly connected to Conj. A.

Question. Let g be a complete metric of $K \in(-1,0)$ on D^{2}, and let $u: \partial_{\infty}\left(D^{2}, g\right) \rightarrow \partial D^{2}$ be quasisymmetric. Is there a unique properly immersed convex disk in \mathbb{H}^{3} with induced metric g and with u as the gluing map with the boundary at infinity facing it?
Question*. Let g be a complete metric of $K<1$ on D^{2}, with closed geodesics of $L>2 \pi$, and let $u: \partial_{\infty}\left(D^{2}, g\right) \rightarrow \partial D^{2}$ be quasi-symmetric. Is there a unique properly immersed convex disk in \mathbb{H}^{3} with $I I I=g$ and with u as the gluing map with the
 boundary at infinity facing it?

