Circle patterns on surfaces with complex projective structures Joint work with Andrew Yarmola

Jean-Marc Schlenker

University of Luxembourg

Circle Packings and Geometric Rigidity ICERM, July 6-10, 2020 (online)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Where do circle⁵ live?

What do we need to consider circles?

• The Euclidean plane.

Circles are invariant under isometries \Rightarrow also in Euclidean surfaces. Flat surface : charts in \mathbb{R}^2 , transitions maps are Euclidean isometries.

• The hyperbolic plane.

Same reason – also on hyperbolic surfaces.

Hyperbolic surface : charts in $\mathbb{H}^2,$ transitions maps are hyperbolic isometries.

• \mathbb{CP}^1 .

Notion of circle, invariant under Möbius transformations. Complex projective structures : charts in \mathbb{CP}^1 , transition maps in $PSL(2,\mathbb{C})$. Also called \mathbb{CP}^1 -structures on a surface *S*. Space \mathcal{CP}_S .

Complex projective structures on surfaces

Let $\sigma \in \mathcal{CP}_S$ be a \mathbb{CP}^1 -structure on S. We have :

- A developing map $dev : \tilde{S} \to \mathbb{CP}^1$.
- A holonomy representation $\rho : \pi_1 S \to PSL(2, \mathbb{C})$.

 σ is *Fuchsian* if *dev* is a homeomorphism onto a disk, or equivalently if ρ is Fuchsian (into $PSL(2, \mathbb{R})$, up to conjugation). Examples :

• A hyperbolic structure determines a Fuchsian \mathbb{CP}^1 -structure on S.

• An Euclidean structure on T^2 determines a \mathbb{CP}^1 -structure, $dev(\tilde{T}^2) = \mathbb{CP}^1 \setminus \{\infty\}.$

Thm. (Thurston-Lok) \mathbb{CP}^1 -structures are locally determined by their developing map $\rho : \pi_1 S \to PSL(2, \mathbb{C})$. Therefore, \mathcal{CP}_S has complex dimension 6g - 6 for $g \ge 2$, 2 for g = 1.

Circle packings on surfaces with \mathbb{CP}^1 -structures

 S^2 admits a unique \mathbb{CP}^1 -structure, given by \mathbb{CP}^1 .

Thm. (Koebe) The 1-skeleton of a triangulation of S^2 is the incidence graph of a circle packing of \mathbb{CP}^1 , unique up to Möbius transformations.

Thm. (Thurston) The 1-skeleton of a triangulation of S_g , $g \ge 2$, is the incidence graph of a unique circle packing in S_g equipped with *some hyperbolic* metric.

Question. How to understand all circle packings on S_g equipped with any \mathbb{CP}^1 -structure, not necessarily Fuchsian?

There should be many – real dimension 6g - 6.

The KMT conjecture

Since $PSL(2, \mathbb{C})$ acts on \mathbb{CP}^1 by holomorphic maps, any \mathbb{CP}^1 -structure on S determines an underlying *complex structure*.

Complex structure : charts in \mathbb{C} , transition maps holomorphic.

The space of complex structures on S (up to isotopy) is the *Teichmüller* space of S, T_S . It has real dimension 6g - 6.

 $\mathcal{CP}_S \simeq T^*\mathcal{T}_S,$ through a construction using the Schwarzian derivative.

Kojima, Mizushima and Tan proposed :

Conj. (KMT) Let Γ be the 1-skeleton of a triangulation of S_g , let \mathcal{CP}_{Γ} be the space of \mathbb{CP}^1 -structures on S admitting a circle packing with incidence graph Γ . Then the forgetful map $\mathbb{CP}_{\Gamma} \to \mathcal{T}_S$ is a homeomorphism.

Holds for g = 0 (Koebe), also for tori when Γ has only one vertex (KMT). Note : interaction between discrete and continuous conformal structures.

(ロ) (日) (日) (王) (王) (王) (C) (5/14)

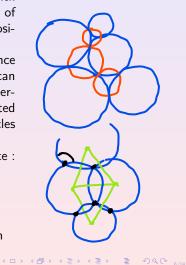
Delaunay circle patterns

A Delaunay circle pattern on S equipped with a \mathbb{CP}^1 -structure S is (basically) the pattern of circles associated to the Delaunay decomposition of a finite set of points on S.

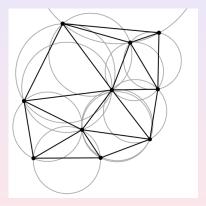
To a circle packing on (S, σ) with incidence graph the 1-skeleton of a triangulation, one can associate a Delaunay circle pattern with all intersection angles $\pi/2$: add *dual* circles, associated to the faces of Γ and orthogonal to the circles associated to adjacent vertices.

To a Delaunay circle pattern one can associate :

- An incidence graph (vertices=circles, edges=incidence relations),
- an angle for each edge : the intersection angle between circles (π if tangent).



A Delaunay circle pattern



◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

The KMT conjecture for Delaunay circle patterns

The intersection angles of a Delaunay circle pattern satisfy :

• For each vertex v of $\int_{v \in e}^{*} \theta_e = 2\pi$.

② For each closed contractible path in Γ^{\bullet} not bounding a face, $\sum_{e} \theta_{e} > 2\pi$.

Conj A. Let Γ be the 1-skeleton of a cell decomposition of *S*, and $\theta: \Gamma^1 \to (0, \pi)$ satisfying (1) and (2). Let $\mathcal{CP}_{\Gamma, \theta}$ be the space of \mathbb{CP}^1 -structures with a Delaunay circle pattern with incidence graph Γ and intersection angles θ . The forgetful map $\mathcal{CP}_{\Gamma, \theta} \to \mathcal{T}_S$ is a homeomorphism.

A deformation argument

A possible path towards a proof of Conj. A :

1
$$\mathcal{CP}_{\Gamma, \frac{1}{2}}$$
 has real dimension $6g - 6$,

2 $\pi_{|\mathcal{CP}_{\Gamma,\theta}}$ has injective differential (*infinitesimal rigidity*),

④ $CP_{\Gamma,\theta}$ is connected and T_S simply connected.

$$\begin{array}{l} (1)+(2) \rightarrow \pi_{|\mathcal{CP}_{\Gamma,\theta}} \text{ is a local homeomorphism,} \\ (3) \rightarrow \text{ it is a covering map,} \\ (4) \rightarrow \text{ the degree is } 1. \end{array}$$

For (2) see talk by Wayne Lam, for g = 1.

Thm B. (3) holds.

Note. Also implies the corresponding properness for circle *packings* follows.

From \mathbb{CP}^1 -structure to hyperbolic ends

Def. A hyperbolic end is a hyperbolic manifold homeomorphic to $S \times [0, \infty)$, complete on the side of ∞ , and bounded on the side of 0 by a concave pleated surface. **Thm.** (Thurston) 1–1 correspondence

between hyperbolic ends and \mathbb{CP}^1 -structures on S.

Hyperbolic ends are also determined by

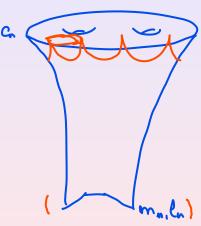
the data on the 0 side : a hyperbolic metric and a measured bending lamination. $\mathcal{CP}_{S} \simeq \mathcal{T}_{S} \times \mathcal{ML}_{S}$.

Delaunay circle pattern at infinity \rightarrow ideal polyhedron in *E*, ext. dihedral angles θ .

Key ideas of the proof of Thm B

Let $\sigma_n \in C\mathcal{P}_{\Gamma,\theta}, n \in \mathbb{N}$, and let $c_n = \pi(\sigma_n)$. We assume that $(c_n)_{n \in \mathbb{N}}$ converges, and need to prove that a subsequence of $(\sigma_n)_{n \in \mathbb{N}}$ converges. We consider the hyperbolic end E_n associated to σ_n , and $(m_n, l_n) \in \mathcal{T}_S \times \mathcal{ML}_S$. Then l_n is bounded because dihedral angles are bounded,

 m_l is bounded because c_n is bounded.



◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 の Q · 11/14</p>

The Weyl problem in \mathbb{H}^3 and its dual

Weyl problem. (Alexandrov, Pogorelov) Let g be a metric on S^2 with $K \ge -1$. Is there a unique convex body in \mathbb{H}^3 with induced metric g on its boundary?

Weyl* problem. Let g be a metric on S^2 with K < 1 and closed geodesics of length $L > 2\pi$. Is there a unique convex body in \mathbb{H}^3 with III = g on the boundary?

For polyhedra, *III* is related to dihedral angles. Results on *WeyI** for compact polyhedra (Rivin-Hodgson), ideal polyhedra (Rivin), smooth surfaces (S.) etc. For Fuchsian polyhedra (Bobenko-Springborn, Fillastre, Leibon, ...)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - のへで 12/14

The Weyl problem in hyperbolic ends

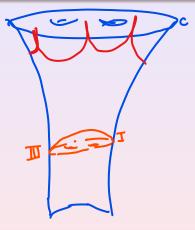
Question. Let g be a metric on S with $K \ge -1$, and let $c \in T_S$. Is there a unique hyperbolic end containing a convex domain with induced metric g on the boundary, and with conformal structure at infinity c?

Question^{*}. Let g be a metric on S with

K < 1 and closed, contractible geodesics of length $L > 2\pi$, and let $c \in \mathcal{T}_S$. Is there a unique hyperbolic end containing a convex domain with III = g on the boundary, and with conformal structure at infinity c?

Conj. A is a special case of the second

question for "ideal polyhedra".



◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 の Q · 13/14</p>

Unbounded convex subsets in \mathbb{H}^3

Consider \tilde{E} , and forget the group action. Leads to a Weyl problem for unbounded convex domains in \mathbb{H}^3 . Different flavors, one particularly connected to Conj. A.

Question. Let g be a complete metric of $K \in (-1, 0)$

on D^2 , and let $u : \partial_{\infty}(D^2, g) \to \partial D^2$ be quasisymmetric. Is there a unique properly immersed convex disk in \mathbb{H}^3 with induced metric g and with u as the gluing map with the boundary at infinity facing it? **Question**^{*}. Let g be a complete metric of K < 1

on D^2 , with closed geodesics of $L > 2\pi$, and let $u : \partial_{\infty}(D^2, g) \to \partial D^2$ be quasi-symmetric. Is there a unique properly immersed convex disk in \mathbb{H}^3 with III = g and with u as the gluing map with the boundary at infinity facing it?

